Swimming Hydrodynamics of a Run-And-Tumble Bacterium with Helical Flagella
نویسندگان
چکیده
منابع مشابه
Run-and-tumble particles with hydrodynamics: sedimentation, trapping, and upstream swimming.
We simulate by lattice Boltzmann the nonequilibrium steady states of run-and-tumble particles (inspired by a minimal model of bacteria), interacting by far-field hydrodynamics, subject to confinement. Under gravity, hydrodynamic interactions barely perturb the steady state found without them, but for particles in a harmonic trap such a state is quite changed if the run length is larger than the...
متن کاملa comparison of teachers and supervisors, with respect to teacher efficacy and reflection
supervisors play an undeniable role in training teachers, before starting their professional experience by preparing them, at the initial years of their teaching by checking their work within the proper framework, and later on during their teaching by assessing their progress. but surprisingly, exploring their attributes, professional demands, and qualifications has remained a neglected theme i...
15 صفحه اولRun-and-tumble particles in speckle fields.
The random energy landscapes developed by speckle fields can be used to confine and manipulate a large number of micro-particles with a single laser beam. By means of molecular dynamics simulations, we investigate the static and dynamic properties of an active suspension of swimming bacteria embedded into speckle patterns. Looking at the correlation of the density fluctuations and the equilibri...
متن کاملHelical beating of actuated flagella
A possible propulsion mechanism at low Reynolds number is the rotation of a flexible filament, tilted with respect to its rotation axis. Using a simple linear model, we establish the non linear torque-force relations for two torque-driven actuation modes. When the rotation of the filament is induced by two perpendicular transverse oscillating torques, the propulsive force increases monotonicall...
متن کاملDirectional persistence and the optimality of run-and-tumble chemotaxis
E. coli does chemotaxis by performing a biased random walk composed of alternating periods of swimming (runs) and reorientations (tumbles). Tumbles are typically modelled as complete directional randomisations but it is known that in wild type E. coli, successive run directions are actually weakly correlated, with a mean directional difference of approximately 63 degrees. We recently presented ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2010
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2009.12.860